Background Knowledge in Learning-based Relation Extraction

نویسندگان

  • QUANG XUAN DO
  • ChengXiang Zhai
چکیده

In this thesis, we study the importance of background knowledge in relation extraction systems. We not only demonstrate the benefits of leveraging background knowledge to improve the systems’ performance but also propose a principled framework that allows one to effectively incorporate knowledge into statistical machine learning models for relation extraction. Our work is motivated by the fact that relation extraction systems in the literature usually use evidence that is written explicitly in the input text to detect and characterize the semantic relations between target concepts. Although this approach achieves reasonable performance, it does not necessarily guarantee accurate extraction due to problems of poor information representation of the systems’ inputs and lack of knowledge to support logical reasoning. We argue that relation extraction systems would benefit from using one or more background knowledge sources, both in enriching the systems’ inputs and biasing the final outputs. We illustrate our framework in the context of several learning-based relation extraction tasks. The first task is Taxonomic Relation Identification where we employ an external knowledge source to construct meaning representation of the task inputs and support global inference to identify taxonomic relations between input terms. In the second task, Event Relation Discovery, we focus on identify causality relation between events in text. Our approach leverages background knowledge to perform joint inference among several classifiers that make local decisions on event causality relation. After that, we study the problem of constructing a timeline of events extracted from text, Event Timeline Construction. To address this task, we propose a new timeline representation with events mapped to absolute time intervals. In this work, we present a time interval-based global inference model that jointly assigns events into time intervals on a timeline and orders events temporally. Besides using relational constraints in the inference model, we also show that using event coreference as another source of background knowledge is beneficial to the system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ontological Smoothing for Relation Extraction

There is increasing interest in relation extraction, methods that convert natural language text into structured knowledge. The most successful techniques use supervised machine learning to generate extractors from sentences which have been labeled with the arguments of the relations of interest. Unfortunately, these methods require hundreds or thousands of training examples, which are expensive...

متن کامل

Yap, Willy and Timothy Baldwin (2009) Experiments on Pattern-based Relation Learning, in Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM 2009), Hong Kong, China

Relation extraction is the task of extracting semantic relations— such as synonymy or hypernymy—between word pairs from corpus data. Past work in relation extraction has concentrated on manually creating templates to use in directly extracting word pairs for a given semantic relation from corpus text. Recently, there has been a move towards using machine learning to automatically learn these pa...

متن کامل

Review of Relation Extraction Methods: What Is New Out There?

Relation extraction is a part of Information Extraction and an established task in Natural Language Processing. This paper presents an overview of the main directions of research and recent advances in the field. It reviews various techniques used for relation extraction including knowledge-based, supervised and self-supervised methods. We also mention applications of relation extraction and id...

متن کامل

طراحی یادگیری مبتنی ‌بر وب با تأکید بر معرفت‌شناسی سازنده‌گرایی

  Current growth of philosophical and educational theories and computer technology has provided new forms of education in the world. Modern world has features such as communication, non-congruence, and flexibility. Therefore, web and other multimedia technologies are just information and application resources unless could provide learning field and content. The purpose of this study is reconstr...

متن کامل

The Investigation on the Relations between Epistemological Beliefs and Self-Regulating Learning Strategies among Students in North Khorasan University of Medical Sciences in 2017

Introduction: Poor epistemological beliefs are among the reasons which will lead a person to tiredness, lack of motivation and distrust to personal abilities. This is usually resulted from the fact that individuals with such beliefs image the knowledge as unrelated and confusing elements which surrounded by references and they will never try for learning it. In the recent years, there are high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012